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A statistical theory of phase local pulsating motions in uniform flows of a two-component 

monodisperse system of gas and particles is presented here on the assumption that varia- 
tions of the mean flow induced by pulsations are comparatively small. It is shown that vd- 

ation of pulsation velocities of individual particles cannot be considered as a Mdtovhn 

process, hence the motion of an aggregate of particles in a stream of gas cannot generally 

be presented as a random process with independent increments. Expressions defining the 
random motion intensity, and the fluctuating streams of phases are derived together with the 
transport factors of the suspended particles system. 

1. Pattern of random motions. In the following we shall consider stationary 
uniform flows of the dispersed medium only in which the macroscopic variables (such as, 
volume concentration of particles p, velocities v and w of fluid and the dispersed phase in 
a hydrodynamic approximation, etc.) are independent of coordinates and time. The dispersed 
phase may in its zero approximation be considered as an ordered lattice of particles in a 
stream of gas, provided there is no interaction between particles, and no changes of their 
relative position take place. Equations presented in papers [ 1 to 31 in which the dispersed 
phase was considered aa a perfect continuous medium are valid in this approximation. Ass- 
uming for simplicity’s sake the ordinary viscous interaction force between the phases to be 
linearly dependent on the interphase slip, and neglecting the weight of gas, we obtain in a 
system of coordinates where w. = 0 and VO = (u, 0, 01, the following Eqs.: (I.11 

-(I-p)&-@An=O, -pg+fPpKu-ddzgp-0, P=+$- 

Here p and po are respectively the gas pressure and viswsity, d 2 the density of the par- 

ticle material, a the particle radius, g the free fall acceleration and K@) a function which 

takes into account the increase of the effective viscous resistance force of the ordered nade- 
formable lattice of particles in a constrained flow pattern (1y (0) = 1, dX/dp > 0). 

The solution of Eqs. (1.1) is of the form 

p = const - d,gpx, u = (1 - p) 4g @KY’, u = - u (13 / g) (1.2) 
Actually each of the particles suspended in the stream is subject to random pulsations 

which load to oscillations of the lattice instantaneous nodes and local disturbaucea of its 
order. Such fluctuations of a particle result in the appearance of local perturbations in the 
flow in the vicinity of that particle, snbstantially affecting the flow past partides in its im- 
mediate neigh~~ood. These individual small scale motions according to the pattern of pa- 
per [d lead to poroeity flnctnations of the diapersed medinm, and disturb the balance of for- 
cas expressed by Eqs. (1.1). As the result of tit4 there appear in the system macroscopic 
fluctuations of the gas stream velocity and pressnre on a scale considerably greater thau the 
average distance between particles. These flactuations lead to large scale, essentially 
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anisotropic pnlration8 of large cluster8 (‘packets’) of particles. the physical aspects of 
this model, and it8 correlation with experimentd data were conddersd in great detail in 
[4]. Its beet experfmatal confirmation may be found, for exLuIIple, in [S] when: flnidization 
by air of fairly large hollow spheres was investigated, and which rncceeded in drawing a 
clear distinction between the motion of packets attd the pulsation of individual particles 
within these, resulting in their dispersal. 

A particle instantaneous velocity may be represented as the sum of SW+ W, where 6W 

is the dispersed phase hydrodynamic velocity averaged over 8 very large nmnber of parti- 
cles (packet velocity) and W the velocity of the particle individual motion within the packet 
For simplicity’s sake we shall assume that velocities SW, 19, as well as the gas mean vel- 
ocity fluctuation 6V 8re small in comperison with Il. With this assumption and the use of 
relationships (1.2) which characterize the behavior of the ordered lattice of noninteracting 
particles, we can consider the linearized problem as the zero approximation. 

In the stream each particle is acted upon by 8 force which mey be expressed as the sum 
of orderly and sporadic components. The orderly force calculated per unit volume of parti- 
cles is given by the second of Eqs. (1.1). The sporadic force may also be resolved into two 
components the first of which is associated with variations of the orderly force at macrosco- 
pic fluctuations of parameters, and is of the form 

-v”yg asp + U(jK (&Ii - hi) + aO $ ‘hidP* a0 = pv” (1.3) t 
Here u” is the volume of a particle. The second component is primarily the result of the 

viscous resistance due to the small scale motion and, secondly, to particles random inter 
action with local perturbations of the carrier stream which are of a magnitude of the order 
of the mean distance between particles, and also to direct collisions with neighboring parti- 
cles. Summarizing the results, we obtain for the particle the Langevin Eq. of the form 

(1.4) 

Here m = d,v” is the particle mase, F a random force, while coefficient a differs from CCQ 
in (1.3) in that only that in it the effective viscosity /.t, a8 computed in [6] , has been substi- 
tuted for the physical gas viscosity p,, . For 6ul = SW, = 8p = 8p = 0 Eq. (1.4) becomes the 
Langevin equation for a Brownian particle [y] in a medium of viscosity II. 

Summating (1.4) over a large number of particles in a unit of volume (by a suitable selec- 
tion of this unit n may be always made large), we obtain the equation of motion of the dis- 
persed phase in the hydrodynamic approximation 

(1.5) 

It has been taken into account here that for large 8 we have x Wt - n’h (I Wt 1 ) 
and ZF‘ - n’ft (1 Ft 1 >, while the L agrangiau derivative appearing in (1.4) has been re- 
placed by an Eulerian one, which is justified by virtue of the assumed smallness of 8W + W. 
Eq. (1.5) coincides with the linearized equation which can be obtained from the dispersed 
phase equation of motion [I to 31, if it is assumed that in this phase the momentum transfer 
is acco’mpliahed by its motion only. 

We ahall use for expressing velocity 8V the linearized equation derived from the equation 
of motion of the dispersion medium [l to 31. Taking into account (1.2) and neglecting the gas 
inertia and viscous energy dissipation, we obtain 

For an incomprettsfble gas the mass conservation equation becomes after Iinearization 

0.7) 
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Small scale motions of particles tend to attenuate fluctuations of the dispersed phase 

porosity. We describe this process by means of the diffusion Eq. 

(1.8) 

Here D is the coefficient of self-diffusion of particles resulting from scale isotropic 

motions. 

We note that fluctuations of the effective pressure in (1.5) and (1.6) are associated with 

the momentum transfer not only by the thermal motions of molecules, but also by local per- 

turbations which of course, are not described by tbe averaged Eqs. (1.6). Hence, in the 

general case 8p is a tensor. In view of our problem symmetry only the diagonal components 

of this tensor differ from zero, and Fip, 4 8pz = 8p,. 

2. Stochastic ewatlons and their solution. In the following we shall 

make use of the apparatus of the correlation theory of stationary random fluctuation proces- 

ses. We shall represent random magnitudes in the form of FourierStiltjes stochastic inte- 

grals 

{I%, 6w, 6p, 8~) = 5 eioi+ikr {dZ,, dZ,, dZ,, dZ,} (2.1) 

Here integration is carried out over the whole wave space and all frequencies, assuming 
that random processes dZ in (2.1) satisfy all necessary requirements, and re 

ferentials of random functions of point (0, k) with uncorrelated increments [8 P 

resent dif- 

. The spec- 

tral densities of various correlations are defined as the second moments of the correspon- 

ding magnitudes of dZ; for example, the spectral density of the space-time correlation of 

magnitude 6p is defined by the equality 

fPP (w, k) = lim 
(dz, (a, k) dZp* (0. k)> 

dk, dw -0 dk,dk2dk3do 

In the following we shall separate the isotropic part of all random processes 

8Vi = V’6il _t Vi”* 6Wi = W’bil $ Il’i”, 
a6P 
- = ~~-6~i + z 
axi (2.2) 

dZ,.i = dZ,‘61, + dZt,i”, dZ,.i = dZ,,.‘8,i + dZ,i”, kidZ, = kldZ,’ + kidZ,” 

Substituting (2.1) and (2.2) into Eqs. (1.5) to (1.71, and separating in the latter their iso- 
tropic and anisotropic parts, we obtain two systems of Eqs. 

- ipk,dZ,’ + PpK (dZ,,’ - dZ,‘) + pr, g rrdZ, = id,pBdZ,’ 

- i (I- Q) kldZ,’ - @K (dZ,’ --‘dZ,.‘i - &I $ udZ, - d,gdZ, = 0 

(1 - p) kldZ,’ =-. rrkldZ, (2.3) 

- ipkidZ,” + PpK (dZ,i” - dZ,i”) = id,p,odZ,,.i” 

- i (1 - p) kidZp” - PpK (dZri” - dZ,i”) = 0, 

Solutions of Eqs. (2.3) and (2.4) are of the form 

(1 - p) kidZri” = OdZ, (2.4) 

dZ,’ = PKU 
( 

-?- + y) dZ,, 
PK+id,(l-pp)~~~ l-p 

dZ,’ = -&- dZ, (2.5) 

dZ,’ = d2klm1 (- p-AZ, + igdZ,) 



88 

PK 
alo” = PK + id?, (i - p) 0 (1- p) k2 

-2~ dZ,, dZ”, = /$-- dZ, 

dZ,” = -- d%puk* (kd2,“) (2.6) 
These equations make it possible to find all of the unknown spectral denaitics, when 

the spectral density of process 6p is known. The latter must be, of course, determined 
from indepadent considerations. 

We note that the problem here considered is a natural generalization of the roblem of 
fluid filtration through a random porosity medium which was investigated in [9 . The large f 
scale motions in a disperse system msy, by analogy with filtration, be called psendotnrbu- 

lence, an important difference being that in the case of pseudoturbulence in a disperse sys- 
tem, ccntrsry to that of a filtration system, the dispersed phase which simulates a porous 
medium is itself drawn into these pseudoturbulent motions. 

3. Spectral density of the random process 8~. Parameter&n which de- 

fines the divergence of the actual number of particles in a unit of volume from its mean val- 

ue may in the case of point particles be expressed as the sum of 6-functions defining the 

positions of individual particles in apace [lo]. In view of the equivalence of particles and 

of the statistical uniformity of the space, values of 6n in different volumes at any fixed 

instant of time cat be considered as independent, i.e. the spectral density of the 6n - row 

cess defined with respect to simultaneous two-point correlations is independent of k P 81. 

This obviously also holds for the ap-process. Hence, using the diffusion Eq, (1.8) for the 

spectral density jpp(o, k), we obtain relationship 

fPP (0, k) = C’DP (& + Da A+)-‘, C’ = con& (3.1:) 
Actually particles occupy a finite volnme, and their positions are determined not by the 

S-functions, but within the accuracy of function 

8 (P - rj (t)) = (v’/ p)-* Y (b - 1 r - rj (1) I), b = qr% 

where Y is the Heaviside function, and the introduction of function @@I conforms to the pro- 
cedure of smoothing the spectrum short wave details as suggested by Massignion [IO], 
while the corresponding spectral density of the ap-process differs from that of (3.11 which 
characterizes a system of point particles with coordinates defined in detail by factor 

F@(k) = +s eikrY (b- 1 r j)dr = 3 
sin kb - kb cos k6 

ksba (3.2) 

Henceainstead of (3.1) we obtain the following Expression: 

fPP (0, k) zzz wIy;2k* sin kb(ir;pBCos kb , c xzz: 3C’ (3-a 

We note that the condition of equality of the total number of degrees of freedom of the 
system of particles in the wave space and the number actual degrees of freedom of all psr- 
ticles was used in [4] instead of the smoothing function 6(r), In that case integration over 

the wave space is in fact replaced by summation over the Brillouin zone, i.e. in short wave 
spectrum area truncation is substituted for the multiplication of function (3.1) by (3.2). The 
disadvantage of this method based on Debye’s ideas is that it doea not allow an unambiguous 
selection of the required number of harmonics in the wave space, and thus contains an ele- 
ment of arbitrariness in the determination of the importance of various harmonics. It is clear 
that the true importance is defined by function (3.31. 

For the computation of constant C in (3.3) we shall determine independently the fluctna- 

tion <sn2>, We introduce the numbers of ‘cells’ N y and N contained in volumea V and A = 
i= 1. with V >> 1, which correspond to the. number of particles which can be tightly packed 
in these volumes. Obviously 

NV = v (P* I 0, iv = p*/ v” 

where p+ is the volumetric cmcentration, and u”/po the specific volume of a particle in a 
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tightly packed system, Let the number of particles in volume V, i.e. the number of occupied 
cells, be ny\( NV . The probability of the presence of n particles in volume A ia to be dct- 

ermined. 
Assuming that all cells of the lattice simulating volume V are equivelcnt, and examining 

the process of filling an empty lattice of N, cells with ny particles, we obtain for the sou- 

ght probability the expression 

It will be readily seen that this distribution satisfies the completeness condition. The 
limit form of function P,(n) for V, ny + -a, but v = nv/Nv = const, is of interest. With the 

use of Stirling form& we obtain 

P (n) =$IiI Pv (n) = (7) vn (i - vp, Y = pl_ ~~) = 2 (3.4) 

The form of this distribution is similar to that of the analogous distribution of diluted 
colloidal. systems [7] , but its parameters have an entirely different meaning. in particular 
for finite values of V, the Poisson distribution obtained from (3.4) in the limit Y + 0 widely 
used in physics of diluted systems, has no meaning in the case of the system here conai- 
dered. The expressions for moments follow from (3.4) (3.5) 
<n) = viv, (+ = VN (vN + 1 - v), (bn2) = vN (1 - v) = n (1 - v) 

We may note that it is not difficult to derive an explicit expression for the temporal car- 
relation of magnitude 6s by using the knows method of Smolukhovskii (71. It is clear Expres- 
sions (3.5) obtained from the discrete model yield ade nate 
ticle fluctuations in continuous volumes at the limit u 

8 
results for the definition of par- 

(p/i)-t + 0, 

It follows on the other hand from (3.3) that 

In accordance with previous statements it was assumed when carrying out integration that 
a + 0, hence Expression (3.2) is equal to unity. Comparing (3.5) and (3.6) we obtain the for 
mula for C, 

c = 3s (1 -v) (0* 3v” P (Pr -PI 
, 

an’ =Tz p+ (3.7) 

It will be seea from (3.3). as well as from Exprcasions (2.5), (2.6) that the temporal 
scale of macroscopic correlations is defined by the self-diffusion coefficient D, magnitude 
@ and other phase parameters, with the scale of force variation (1.3) appearing in the Lan- 
gevin Eq. (1.4) of the same order of magnitude as that of the time of significant changes of 
velocity 6~. It is thus clear that neither the packet motion, nor the complete motion of indi- 
vidual particlea can be considered as a random process with independent increments, irres- 
pective of statistical properties of the random force F in (1.4). In particular, the type of 

Fokker-Plan& or Smolukhovskii equation previously widely used in this analysis [ll and 
li do not hold for the statistical analysis 

0 
f suspended particles systems. 

4. Random motion latenatty and fluctuatfoe phsrre streams. Expras- 

sions (3.3), (3.7) make the computation of complete spacotime,correlutiona of all of the 
(2.5) and (2.6) processes possible. We shell consider here only certain simaltaneons single- 
point correlationa. From (2.5) sad (2.6) we obtain the following equalities: 

(&w&j) = do dkfwtwj (09 k) = 0 s 5 ti # i) 
A similar statement is alao true for the raudom proceaa 6V; it followo as well from tbs 
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motion oymmatry relstfva to the plana of the csrriar atrasm flow direction, 
The computation of spectral density by mesna of (2.5) and (2.6) and integrstion with res- 

pect to o snd k yields for the mean-rqnaaa velocities of the random fluctuating motion of 
partich of a psckat tha followhtg relationihipa: 

(bWI’> = (w”> + (WI=u), (dw,‘> = (6w,‘> = (wINa> 

(w”) = pa ‘“.p*- p) (-2-& + y)p-(~++P(-;)]~* (4.j) 

(wz"r> =+ P?" (Pia--Pf 
~~l-(i~~)ex~(-~)]~ 

h = p’/* 
[ 

a, (i - p) D ‘/a 
gK ] = p’/* (1 - p)‘” ($ +-)“’ a (va = 3) 

It will be seen from this that the mean velocity of packet motions in the stream flow di- 
rection msy considerably exceed the meau velocity in the direction normal to it. Expressions 
for the maan-aqnare velocities of the dispersion medium are sadly derived in exactly the 
same matter from (2.5) and (2.6). We should note, however, that the integral of fvivi &I, k) 
with respect to o la divergent This difficulty stems from the use of the diffusion Eq. (1.81, 
and la easily overcome by the substitution for (1.8) of the more accurate hyperbolic type ep 
nation which takes into account the finite velocities of particle tmnaletiona in s diffnaion 
proCaa% 

Actnd volume flows of phases are represented in the form of sums of flows correapon- 
ding to the ordered lattice model and of additional flue&sting streams aaaodatsd with 
large scale pulsations of phasea. Hence, in s coordinate system in which W. I 0 we have 

Q,,-(i-p)u + Q,,', Q,,'= -((dpbv~), Qw= Qw'= (@awl) 
Compltstiona yield the following expreesiona for the fluctuating streams: 

Q,,' = _ P’ '"',a-~) 1 ” p < o 
(4.3 

Q,,,’ = f”(p;; p) (-& + y)[i--(i+f)exp(---_)]u>O 

We n0l4 that by virtue of the problem symmetry the fluctneting streams of the phases are 
identically zero fn directions normal to that of the carrying stresm. 

The masn volame vafocitiaa of the phaaee do not, therefore, coincide with the velocities 
de&ted by (1.21, and in the system here catsidered am 

Vl = u + (1 - p)-" Q,', w, = p-l Q,' 

For a given caacentration the effective mean volume velocity of the interphase slip is 

u, = vt - w, = u f (1 - p)-'Q,'wp-'Q,'<u 
which my be considered ss due to the increased viscous resistance of an actud lattice of 
pnlaating particles as compared to the resistance of the ordered lattice. We note that a aim& 
lr affect la Jao characteristic of fluid filtration through a medium of random porosity 191. 

It is not difficult to canpnte with the aid of known apace-time correlationa the scales of 
varioaa pulsations in different directions, as well 

&z 
the time scales, and then with the use 

of known form&a [13] to fiud transport factors a ciatad with large scale motions. For 
exmpla, for congraant pseodotsrbnlant viscosity tanaors and for the diaparaed phase diffn- 
aion we have in the approximation here considered f131 

where R,,(7) la the Lagraugian time correlation coefficient of the SIU, -process which for 
aa1all6~ coin&es with the Eularian time correlation coefficient. 
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5. Small scale motfons of particles, From (1.41 and (1.51 we derive the 

Langevin equation for the small scale motions of a sample particle 

??I?= -ctW+F 15.1) 

which is similar in its form to the Langevin equation of a Browaian particle. 
The random force F appearing in (5.11 may be conditionally resolved into two components 

F, and F,, the first of which is related to the interaction of particles and local perturb* 

tions of the carrying stream, which in essence is the permanent interaction of neighboring 

particles via the fluid phase, while the second is the result of direct collision of particle. 
Interaction of the first type may be expected to produce a comparatively slow and smooth 
change of particle velocity W, while collisions are characterized by abrupt variations of 
particle velocity. Direct collisions of particles evidently predominate in the limit case of 
concentrated systems of very large and heavy particles suspended in a low viscosity gas 
stream. Such processes were considered in 141. In the majority of real systems collisions 
play a secondary role, and velocity W changes in the main under the influence of the first 
type of interaction forces. This conclusion was reached, for example, in [S] on the basis of 
experiments in which a close analogy was observed between small scale pulsations of par- 
ticles in a packet and Brownian motions, as expressed by the proportionality of translation 
in a very small time idterval to the root of that interval magnitude. The low collision fre- 
quency observed in [sJ may possible be explained by an attenuation of the relative velocity 

of particles in the process of their convergence, and the squeezing out of the gas film, so 
that even if abrupt velocity changed did occur, their effect was comparatively insignificant. 

In accordance with the theory of random processes of the type of Brownian movements 

[7] we may expect that there exists such a time interval At during which velocity W remains 
practically unchanged, while force Ft undergoes a considerable number of fluctuations. In 

that case with F, < F, the FokkerPlanck equation is valid for the particle distribution 

function with respect to small scale pulsation velocities. If F, 2 Ft and the velocity of a 

particle does not substantially change in the course of its free run (in this connection see 

arguments in [4]1, th en this equation must be supplemented 
sumption of spatial homogeneity we obtain [?] 

by the collision term. On the as- 

Her& C&l is the collision integral in its conventional form, 8 the effective temperature 

of small scale motion (0 = % m <RR>) and B the coefficient of diffusion in the domain of 

individual particle velocities. We note that Eq. (5.2) is related to the small scale motion of 
a particle only, and not to its complete motion within a packet, contrary to the situation con- 
sidered in [I1 and 121. 

The collision term of (5.2) may evidently be neglected for small W and not too great p. 
We then have a complete analogy with the Rrownian motion as in the experiments of [S]. In 
this case the relation between D and 6 is expressed by 

D =6/a (5.3) 
snd the stationary distribution function f is of the Maxwellian form, as it was in another 
limit case considered in [ 41. 

By virtue of (4.1) and (5.3) the complete moan square velocity of a particle is represented 
to within the accuracy of the diffusion coefficient D by an expression of the form 

Parameter D, and therefore also 6 may in principle be determined by equating the energy 
flux Et induced by the large scale motion to that of small scale motion energy dissipation 
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Ex of the latter in the form of heat [& A detailed analysis of snergy phenomena in the 
stream is outside the scope of this paper. We ahall however note that if the visco1.s dinEi- 
patioa of energy of local perturbations of the carrying stream is neglected, then the flow of 
energy Et can obviously be considered equal to the energy dissipation of large scale mo- 
tiona in conrrequence of the irreversible procees of momentum traasfer by small acalc iso- 
tropic motiona. For the latter the conventional in viscous fluid hydrodynamics relationship 
with the effective dynamic viscosity pdp is valid. From (2.51, (2.61, (3.31 and (3.7) we ob- 
tain after computation8 

din K +- ) 

s u= 
-+q-$q&q(~+f)slp(-;) dp i-p 

The small 8cale motion energy dissipation in evidently equal to 

Es = nu (Wr) 3paa 1 
=wD 

(5.5) 

(5.6) 

Equating Exprereiona (5.5) and (5.61, and using expressions of u and 6 from (1.1) and 
(1.21, we obtain for D the following Eq.: 

II 3- p’(p;,p) (~)‘?i--‘;;i;.(l++3xp(-~)]D= 

8 P(P*-PP~ i-p 
=mr p* - 2+ ~~(~+~)~~p(-~)~~ (5.7) ( KS i--p 

Do = 6’ (W / FOY 
Parameter h in (5.7) was defined in (4.11, and S(p) ia a function of the effective viecos- 

ity 1 of the gem flowing pant the ordered lattice of particlea, p = tic, S 61, S (01~ 1, dS/dp > 0 
bee [6]). 

it is not difficult to see that Eq. (5.71 has a finite root D, only if parameter p differs con- 
aiderably from sero, or pe , mrd parameter Do is sufficiently great. If these conditions are 
not fulfilled, thm Eq. (5.71 has a dugle root D = 0 only, i.e., small scale motione are ab- 
sent In this caee thare extt in the eyeem only vertical pseudotarbnient puleatione of in- 
ten&y 

This 1-t conclurion im in a qualitative agreement with the reaulta of numeroaa experi- 
map which prove that with incmasing~ and decreasing p, d,, a the oscillation of partf- 
cl68 in a pa&t ceuen. 

Am ahown by the sxpmmdona hare derived the velocities of random motion are by no 
meana negligible, evwt at maall valuea of p, or p+ - p. Hence, these rerolto are applicable 
to highly rarefied l ystema only. However the method used hem may be applied also to the 
general case by in~ducing into the convection tesms of equations of Section 1 of corrections 
derived in &ation 4, and complementing Eq. f1.51 of the diopened phme by that phase visa 
co&y and pressure term* usociated with the small male motions of particles. The accom- 
pliahmatt of l & l pro-, and the invetifgution of the tmriou~ characteristics of raudan 
motiona iu tonuB of the l vemgsd motion4 ad of the physical parameters of the phases is, 
of ooam, a problem of in own. 
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