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A statistical theory of phase local pulsating motions in uniform flows of a two-component
monodisperse system of gas and particles is presented here on the assumption that varia«
tions of the mean flow induced by pulsations are comparatively small, It is shown that vari=
ation of pulsatien velocities of individual particles cannot be considered as a Markovian
process, hence the motion of an aggregate of particles in a stream of gas cannot gensrally
be presented as a random process with independent increments. Expressions defining the
random motion intensity, and the fluctuating streams of phases are derived together with the
transport factors of the suspended particles system.

1. Pattern of random motions, In the following we shall consider stationary
uniform flows of the dispersed medium only in which the macroscopic variables (such as,
volume concentration of particles p, velocities V and W of fluid and the dispersed phase in
a hydrodynamic approximation, etc.) are independent of coordinates and time. The dispersed
phase may in its zero approximation be considered as an ordered lattice of particles in a
stream of gas, provided there is no interaction between particles, and no changes of their
relative position take place. Equations presented in papers [1 to 3] in which the dispersed
phase was considered as a perfect continuous medinm are valid in this approximation. Ass«
uming for simplicity’s sake the ordinary viscons interaction force between the phases to be
linearly dependent on the interphase slip, and neglecting the weight of gas, we obtain in a

system of coordinates where W, = 0 and V¥, = {u, 0, 0), the following Egs.: 1.1)
d d
—(U—p)E —BoRu=0, —pf +BoKu—dgp=0, B=3 L

Here p and pt are respectively the gas pressure and viscosity, d , the density of the pare
ticle material, a the particle radius, g the free fall acceleration and K{p) a function which
takes into account the increase of the effective viscous resistance force of the ordered unde~
formable lattice of particles in a constrained flow pattern K (0)= 1, dK/dp> 0).

The solution of Eqs. (1.1} is of the form

p = const — dygpz, u= (1 —p)dyg BK)?, u=—u(g/g 1.2

Actually each of the particles suspended in the stream is subject to random pulsations
which lead to oscillations of the lattice instantaneous nodes and local disturbances of its
order. Such fluctuations of a particle resunlt in the appearance of local perturbations in the
flow in the vicinity of that particle, substantially affecting the flow past particles in its im-
mediate neighborhood. These individual small scale motions according to the pattem of pa~
per [4] lead to porosity flnctuations of the dispersed medium, and distarb the balance of for-
ces expressed by Egs. {(1.1). As the result of this there appear in the system macroscopic
fluctuations of the gas stream velocity and pressure on a scale considerably greater then the
average distance between perticles. These fluctuations lead to large scale, esaentially
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anisotropic pulsations of large clusters (‘packets’) of particies. Ihe physical aspects of
this model, and its correlation with experimentel data were considered in great detail in
[4]. Its latest experimental confimmation may be found, for example, in [5] where fluidization
by air of fairly large hollow spheres was investigated, and which succeeded in drawing a
clear distinction between the motion of packets and the pulsation of individual particles
within these, resulting in their dispersal.

A particle instantaneous velocity may be represented as the sum of Sw+ W, where 5w
is the dispersed phase hydrodynamic velocity averaged over a very large number of parti-
cles (packet velocity) and W the velocity of the particle individual motion within the packet
For simplicity’s sake we shall assume that velocities 5w, W, as well as the gas mean vel-
ocity fluctuation 8V are small in comparison with U, With this assumption and the use of
relationships (1.2) which characterize the behavior of the ordered lattice of noninteracting
particles, we can consider the linearized problem as the zero approximation.

In the stream each particle is acted upon by a force which may be expressed as the sum
of orderly and sporadic components. The orderly force calculated per unit volume of parti-
cles is given by the second of Egs. (1.1). The sporadic force may also be resolved into two
components the first of which is associated with variations of the orderly force at macrosco-
pic fluctuations of parameters, and is of the form

— 0" %2 4 K (80— dwy) + 9K ubydp,  @m=B°  (1.3)
i P

Here v° is the volume of a particle. The second component is primarily the result of the
viscous resistance due to the small scale motion and, secondly, to particles random inter-
action with local perturbations of the carrier stream which are of a magnitude of the order
of the mean distance between particles, and also to direct collisions with neighboring parti-
cles. Summarizing the results, we obtain for the particle the Langevin Eq. of the form

m % (Gwi + Wi) = —° -%—6,5 + a()K (ﬁv; b Gwi) -+ GQ%I;(' uéuép — dWi -+ Fi

Here m = d,¢° is the particle mass, F a random force, while coefficient a differs from g
in (1.3) in that only that in it the effective viscosity j1, as computed in {6], has been substi-
tuted for the physical gas viscosity py . For Sv, = Sw, = §p = 8p = 0 Eq. (1.4) becomes the
Langevin equation for a Brownian particle [7] in 2 medium of viscosity .

Summating (1.4) over a large number of particles in a unit of volume (by a suitable selec-
tion of this unit » may be always made large), we obtain the equation of motion of the dis~
persed phase in the hydrodynamic approximation

38w a8 d
dip L = —p D2 1 BoK (80, — duwy) + Bp - ubuidp (1.5)
It has been taken into account here that for large n we have I Wy ~ n's (‘ W, [ >
and ZF; ~ n'1{| Fi|>, while the Lagrangian derivative appearing in (1.4) has been re-
placed by an Eulerian one, which is justified by virtue of the assumed smallness of dw+ W,
Eq. (1.5) coincides with the linearized equation which can be obtained from the dispersed
phase equation of motion [1to 8], if it is assumed that in this phase the momentum transfer
is accomplished by its motion enly.
We shall use for expressing velocity 5V the linearized equation derived from the equation
of motion of the dispersion medium [1 to 3]. Taking into account (1.2) and neglecting the gas
inertia and viscous epergy dissipation, we obtain

38 dK
=—(1—0p) a_z’:' — BpK (dv; — duwy) — Pp rr3 udydp —dagdydp (1.6)
For an incompressible gas the mass conservation equation becomes after linearization

2 ] abdv
(Lt l)to=t—p) 22 .
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Small scale motions of particles tend to attenuate fluctmations of the dispersed phase
porosity. We describe this process by means of the diffusion Eq.
86> 28p
T a:r,-axi

(1.8)

Here D is the coefficient of self-diffusion of particles resulting from scale isotropic
motions.

We note that fluctuations of the effective pressure in (1.5) and (1.6) are associated with
the momentum transfer not only by the thermal motions of molecules, but also by local per-
turbations which of course, are not described by the averaged Eqgs. (1.6). Hence, in the
general case Op is a tensor. In view of our problem symmetry only the diagonal components
of this tensor differ from zero, and 8p, # 8p, = 8p,.

2. Stochastic equations and their solution. In the following we shall
make use of the apparatus of the correlation theory of stationary random fluctuation proces=
ses. We shall represent random magnitudes in the form of Fourier-Stiltjes stochastic inte-
grals

{bv, 8w, 8p, 8p) = \etotivr (dZ,, dZ,, dZ,, dZ,) 2.1)

Here integration is carred out over the whole wave space and all frequencies, assuming
that random processes dZ in (2.1) satisfy all necessary requirements, and represent dif-
ferentials of random functions of point (w, k) with uncorrelated increments [BT. The spec-
tral densities of various correlations are defined as the second moments of the correspon-
ding magnitudes of dZ; for example, the spectral density of the space-time correlation of
magnitude 8p is defined by the equality

. AdZ, (0, k) dZ* (0, k))
feo (0, k) = lim e - £
4k, de — 0 kerdkadksd®

In the following we shall separate the isotropic part of all random processes

’ ” ’ " 35[’ 3])' ap”
61)‘:1)61'1**}— v;, 6w,-=w6,-1+ui , E:TK—éli+ P (22)
AZy; = A28y, + dZy, dZ,; = dZ,'Sy; + A2y, kdZ, = kydZ,’ + kdZ,)
Substitating (2.1) and (2.2) inte Egs. (1.5) to (1.7), and separating in the latter their iso-
tropic and anisotropic parts, we obtain two systems of Eqgs.

— ipkidZ,’ + BpK (dZ,' —dZ.)) + Bp - udZ, = idypodZ,’

— (1 —0)idZ, —BoK (dZ,' —dZ,’)— Bp % udZ, — dugdZ, = 0

(A — p) kidZy = wkydZ, (2.3)
— ipkdZ," 1 BoK (dZ," — dZy;") = idypodZy,"

— il —p)kdZ —BpK (dZ,,/' —dZ,/") =0, (1 —p)kdZ, = odZ, (2.4)
Solutions of Egs. (2.3) and (2.4) are of the form

. BKu 2 din K ;. u
dzZ, = BK—{—idg(i—p)m(l—p +7 )dzp, dz, = 12— dz, (2.5)

dZ, = doky™ (— pdZ,, - igdZ,)
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_——— BK ok . Wk
di," = BT (—p o A—pF dzZ,, dZ7, = A—pye dz,
dZ, = — dsp ok™® (kdZ,") (2.6)

These equations make it possible to find all of the unknown spectral densities, when
the spectral density of process 8p is known. The latter must be, of course, determined
from independent considerations.

We note that the problem here considered is a natural generalization of the problem of
fluid filtration through a random porosity medium which was investigated in [9]. The large
scale motions in a disperse system may, by analogy with filtration, be called psendoturbu-~
lence, an important difference being that in the case of pseudoturbulence in a disperse ays-
tem, contrary to that of a filtration system, the dispersed phase which simulates a porous
medium is itself drawn into these pseudoturbulent motions.

3. Spectral density of the random process Sp. Parameter n which de-
fines the divergence of the actual number of particles in a unit of volume from its mean val-
ue may in the case of point particles be expressed as the sum of S-functions defining the
positions of individual particles in space [10]. In view of the equivalence of particles and
of the statistical uniformity of the space, values of n in different volumes at any fixed
instant of time can be considered as independent, i.e. the spectral density of the 8n -pro-
cess defined with respect to simultaneous two-point correlations is independent of k 68] .
This obviously also holds for the Sp-process. Hence, using the diffusion Eq, (1.8} for the
spectral density fpp(w , k), we obtain relationship

foo (@, k) = C'DE? (@ + D? I#)1, C' = const 3.1)

Actually particles occupy a finite volume, and their positions are determined not by the
§-functions, but within the accuracy of function

8(r—r;(t)) = (/o) Y (b—|r—r;(t)]), b=ap™
where ¥ is the Heaviside function, and the introduction of function @ () conforms to the pro-
cedure of smoothing the spectrum short wave details as suggested by Massignion [10],

while the corresponding spectral density of the 8 p-process differs from that of (3.1) which
characterizes a system of point particles with coordinates defined in detsil by factor

' inkb—kb kb
F@(k):%Se*“Y(b—]r])dr=3-‘°3}-"———Wfos— (3.2)
Hence; instead of {3.1) we oltain the following Expression:

CDk? in kb — kb kb ,
foo (0, 8) = e g+ € =3C (3.3)

We note that the condition of equality of the total number of degrees of freedom of the
system of particles in the wave space and the number actual degrees of freedom of all par-
ticles was used in [4] instead of the smoothing function ®(r). In that case integration over
the wave space is in fact replaced by summation over the Brillouin zone, i.e. in short wave
spectrum area truncation is substituted for the multiplication of function (3.1) by (3.2). The
disadvantage of this method based on Debye’s ideas is that it does not allow an unambiguous
selection of the required number of harmonics in the wave space, and thus contains an ele-
ment of arbitrariness in the detemination of the importance of various harmonics. It is clear
that the true importance is defined by function (3.3).

For the computation of constant C in (3.3) we shall determine independently the fluctua-
tion <&n 2>, We introduce the numbers of ‘cells’ Ny and N contained in volumes V and 4 =
= 1, with ¥ > 1, which comrespond to the number of particles which can be tightly packed
in these volumes. Obviously

Ny =V (py [ V), N =p, /0

where p* is the volumetric concentration, and v°/pe the specific volume of a particle in a
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tightly packed system. Let the number of particles in volame V, i.e. the number of occupied
cells, be ny, <Ny, . The probability of the presence of n particles in volume 4 is to be det~
ermined.

Assuming that all cells of the lattice simulating volume V are equivalent, and examining
the process of filling an empty lattice of Ny, cells with ny, particles, we obtain for the sou-
ght probability the expression

Ny Ny—N (N)
Py (n)=( "v) Ay—n AR
It will be readily seen that this distribution satisfies the completeness condition. The

limit form of function Py (n) for ¥V, ny, + 0o, but v = n /Ny = const, is of interest. With the
use of Stirling formula we obtain

N ' ny ) p
= li _ n J— N-n =1 P S 3.
P(m) =lim Py(m) =, ) (1 —vp¥n v=lim (FL)=L @4
The form of this distribution is similar to that of the analogous diswibution of diluted

colloidal systems [7], but its parameters have an entirely different meaning, In particular
for finite values of v, the Poisson distribation obtained from (3.4) in the limit v » 0 widely
used in physics of diluted systems, has no meaning in the case of the system here consi-
dered. The expressions for moments follow from (3.4) (3.5)

ny =vN, (n? =+N (WN +1 —v), (dn? =N A —vy=n{l —v)
We may note that it is not difficult to derive an explicit expression for the temporal cor
relation of magnitude 8n by using the known method of Smolukhovakii [7]. It is clear Exprea«
sions {3.5) obtained from the discrete model yield ade%uate results for the definition of pare
ticle fluctuations in continnous volumes at the limit v“{pA)=1 4 0,
It follows on the other hand from (3.3) that

3 .
§6pdr =2 Sdmgdkgl(iiféf";’f) <

X fon (@, k) = ﬁ’;l%’ll-)’-,if& . hls=A=1 (3.6)

1
e

In accordance with previous statements it was assumed when carrying out integration that
a - 0, hence Expression {3.2) is equal to unity. Comparing {3.5) and (3.6) we obtain the for-
mula for C,

_ 3n(1—=w(°) _ 3v° p(pe—p)
C= 8nt T Tdnd ;. CR))

It will be seen from (3.3), as well as from Expressions (2.5), (2.6) that the temporal
scale of macroscopic correlations is defined by the self-diffusion coefficient D, magnitude
B and other phase parameters, with the scale of force variation (1.3) appearing in the Lan-
gevin Eq. {1.4) of the same order of magnitude as that of the time of significant changes of
velocity SW. It is thus clear that neither the packet motion, nor the complete motion of indi-
vidual particles can be considered as a random process with independent increments, irres-
pective of statistical properties of the random force F in (1.4). In particular, the type of
Fokker-Planck, or Smolukhovskii equations previously widely used in this analysis [11 and
12] do not hold for the statistical analysis‘f suspended particles systems.

4. Random motion intensity and fluctuating phase streams. Expres-
sions (3.3), (3.7) make the computation of complete space-time correlutions of all of the
{2.5) and (2.6) processes possible. We shall consider here only certain simnltaneous single-
point correlations. From (2.5) and (2.6) we obtain the following equalities:

Swdwyy = {do {dkfuri (0, K) =0 G#D

A similar statement is alao true for the random process 8V; it follows as well from the
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motion symmetry relative to the planes of the carrier stream flow direction.

The computation of spectral density by means of (2.5} and (2.6) and integration with res-
pect to @ and K yields for the mean-square velocities of the random fluctuating motion of
particles of a packet the following relationships:

(Oun?) = w'?y 4 <™, (Ouwn?y = (dwy®) = (w,"?)

oty = e (2 SR (14 ) oxp () o

i =3 S [ () e (-] &

b [AGALT - g (35 [nm

It will be seen from this that the mean velocity of packet motions in the stream flow di=
rection may considerably exceed the mean velocity in the direction nomal to it. Expressions
for the mean-square velocities of the dispersion medium are easily derived in exactly the
same maner from (2.5) and (2.6). We should note, however, that the integral of fy,, (@, k)
with respect to @ is divergent. This difficulty stems from the use of the diffusion Eq. (1.8),
and is easily overcome by the substitution for (1.8} of the more accurate hyperbolic type eq-
vation which takes into account the finite velocities of particle translations in a diffusion
process.

Actual volume flows of phases are represented in the form of sums of flows correspon-
ding to the ordered lattice model and of additional fluctuating streams associated with
large scale pulsations of phases. Hence, in a coordinate system in which W, = 0 we have

QD = (1 - P) u "l" Qv’: Qv, = - <‘39501>, Qw = Qw’ = <dpéw1>

Computations yield the following expressions for the fluctuating streams:

2 -
Qo = — p (P;‘ p) 1ip <0 (4.2)

:__P‘(P:-*P)( 2 dln K __( .9.) (___“.]
Qe = Pe =% T dp)i 1+)exp h) 2 >0

We note that by virtue of the problem symmetry the fluctuating streams of the phases are
identically zero in directions normal to that of the carrying stream.

The mean volume velocities of the phases do not, therefore, coincide with the velocities
defined by (1.2), and in the system here considered are

n=u+00—-p7Q, w=p1Q

For a given concentration the effective mean volume velocity of the interphase slip is

Uy =p —wy=u + {1 —p)Q" —p0y u
which may be considered as due to the increased viscous resistance of an actual lattice of
pulsating particles as compared to the resistance of the ordered lattice. We note that a simi«
lar effect is also characteriatic of fluid filtration through a medium of random porosity [9].

It is not difficult to compute with the aid of known space~time correlations the scales of
various pulsations in different directions, as well as the time scales, and then with the use
of known formulas [13] to find transport factors aﬁcia&ed with large scale motions. For
example, for congruent pseudoturbulent viscosity tensors and for the dispersed phase diffu-

sion we have in the approximation here considered [13]
T

Li=0, (i+) lu=G®=2Bw{(r—9R,(s)ds
1]

where R,,(7).is the Lagrangian time correlation coefficient of the Sw, -process which for
small 5W coincides with the Eulerian time correlation coefficient.
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5. Small scale motions of particles, From (1.4) and (1.5) we derive the
Langevin equation for the small scale motions of a sample particle

m;‘g:...aWJrF (5.1)
which is similar in its form to the Langevin equation of a Brownian particle.

The random force F appearing in (5.1} may be conditionally resolved into two components
F, and F,, the first of which is related to the interaction of particles and local perturba-
tions of the carrying stream, which in essence is the permanent interaction of neighboring
particles via the fluid phase, while the second is the result of direct collision of particle.
Interaction of the first type may be expected to produce a comparatively slow and smooth
change of particle velocity W, while collisions are characterized by abrupt variations of
particle velocity. Direct collisions of particles evidently predominate in the limit case of
concentrated systems of very large and heavy particles suspended in a low viscosity gas
stream. Such processes were considered in [4]. In the majority of real systems collisions
play a secondary role, and velocity W changes in the main under the influence of the first
type of interaction forces. This conclusion was reached, for example, in [5] on the basis of
experiments in which a close analogy was observed between small scale pulsations of par~
ticles in a packet and Brownian motions, as expressed by the proportionality of translation
in a very small time interval to the root of that interval magnitude. The low collision fre-
quency observed in [5] may possible be explained by an attenuation of the relative velocity
of particles in the process of their convergence, and the squeezing out of the gas film, so
that even if abrupt velocity changed did occur, their effect was comparatively insignificant.

In accordance with the theory of random processes of the type of Brownian movements
[7] we may expect that there exists such a time interval At during which velocity W remains
practically unchanged, while force F, undergoes a considerable number of fluctuations. In
that case with F, < F, the Fokker-Planck equation is valid for the particle distribution
function with respect to small scale pulsation velocities. If F, > F, and the velocity of a
particle does not substantially change in the course of its free run (in this connection see
arguments in [ 4]), then this equation must be supplemented by the collision term. On the as~
sumption of spatial homogeneity we obtain 7]

of _ o a(Wy B __ ¥ [p_ o8
T m Tow; Tom awow; T C(ff) \B= -,;) (5.2)

Here-C (ff;) is the collision integral in its conventional form,  the effective temperature
of small scale motion (9= % m <W2>) and B the coefficient of diffusion in the domain of
individual particle velocities. We note that Eq. (5.2) is related to the small scale motion of
a particle only, and not to its complete motion within a packet, contrary to the situation con=
sidered in [11 and 12,

The collision term of (5.2) may evidently be neglected for small W and not too great p.
We then have a complete analogy with the Brownian motion as in the experiments of [5l. In
this case the relation between D and 4 is expressed by

D=68/a ©.3)
and the stationary distribution function f is of the Maxwellian form, as it was in another
limit case considered in | 4],

By virtue of (4.1) and (5.3) the complete mean square velocity of a particle is represented
to within the accuracy of the diffusion coefficient D by an expression of the form

<6wz>:p”(p.~p)[( 2 +‘“"K>2u2+ K BD]X

Pa 1—p dp (T—p) ds
% [1_(1 + ) exp(— %)} + 220 (5.4)

Parameter D, and therefore also # may in principle be determined by equating the energy
flux E; induced by the large scale motion to that of small scale motion energy dissipation
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E, of the latter in the form of heat [4l. A detailed analysis of energy phenomena in the
stream is outside the scope of this paper. We shall however note that if the visco-s dissi-
pation of energy of local perturbations of the carrying stream is neglected, then the flow of
energy E, can obviously be considered equal to the energy dissipation of large scale mo-
tions in consequence of the irreversible process of momentum transfer by small scale iso-
tropic motions. For the latter the conventional in viscous fluid hydrodynamics relationship
with the effective dynamic viscosity pd,D is valid. From (2.5), (2.6), (3.3} and (3.7) we ob-
tain after computations

By = pdaD {do § dh*f s = - Lo=8 K [(1 2+

dinK\3 u? K BD a a
+ 55 1 T a1 e (— %) (5-9)
The small scale motion energy dissipation is evidently equal to
_ _ 3pa? |
Ey=na (W™ = 250D (5.6)

Equating Expressions (5.5) and (5.6), and using expressions of u and 3 from (1.1) and
(1.2), we obtain for D the following Eq.:

[3__ P’(P;.—P) (%)2 (1_1p)‘ (1+%)exp (*—%HD=

e A T L

Dy = g*(ds0? / po)®

Parameter A in (5.7) was defined in (4.1}, and 5{p) is a function of the effective viscos-
ity u[oi)t.he gas flowing past the ordered lattice of particles, it = g S (p), $(0) = 1, dS/dp> 0
{see |6}]).

It is not difficult to see that Eq. (5.7) has a finite root D, only if parameter p differs con-
siderably from zero, or p,, and parameter D, is sufficiently great. If these conditions are
not fulfilled, then Eq, (5.7) has a single root D = 0 only, i.e., small scale motions are ab-
sent. In this case there exist in the system only vertical pseudoturbulent pulsations of in-
tensity

. . p*(Pe —P) ( 2 dlDK)’ 'Y
<w > Ps 4§ — P + dp u (5‘8)
This last conclusion is in a qualitative agreement with the results of numerous experi-
ments which prove that with increasing (2o and decreasing p, d,, o the oscillation of parti-
cles in a packet ceases.
As shown by the expressions here derived the velocities of random motion are by no
means negligible, even at small values of p, or p, — p. Hence, these results are applicable
to highly rarefied systems only. However the method used here may bs applied also to the
general case by introducing into the convection terms of equations of Section 1 of corrections
derived in Section 4, and complementing Eq. (1.5) of the dispersed phase by that phase vis~
cosity and pressure terms associated with the small scale motions of particles. The accon-
plishment of such & program, and the investigation of the various characteristics of random
motions in terms of the averaged motions and of the physical parameters of the phases is,
of course, a problem of its own.
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